
www.manaraa.com

Differentiated service policy in smart warehouse automation

Zijian He, Vaneet Aggarwal* and Shimon Y. Nof

School of Industrial Engineering, Purdue University, West Lafayette, IN, USA

(Received 24 July 2017; accepted 18 December 2017)

Smart warehouse automation has emerged as an effective, competitive solution for suppliers and distributors. With the
increasing demand for physical storage and distribution services, suppliers and service providers are challenged to
respond not only effectively, but with minimal latency. Differentiated service levels for different classes of customer
orders have not yet, however, been developed for physical storage and retrieval. In this paper, in the context of smart
warehouse automation services, a novel policy, called Differentiated Probabilistic Queuing (DPQ) is developed for ser-
vicing customers’ orders by Automated Guided Vehicles (AGV). Applying the DPQ policy, the average overall latency
of each customer order, the mean overall processing time of this customer’s orders in the smart warehouse automation
system, is characterised under Poisson customer order arrival patterns. The weighted average latency of all customer
orders is optimised over the choice of (1) storage assignment and (2) DPQ policy. Due to the existence of two types of
variables, Alternating Minimisation method is applied to solve this joint optimisation problem. Compared with a combi-
nation of the classical turn-over rate storage assignment method and FCFS policy, the new approach yields 19.64%
lower (better) objective function value with statistical significance. Numerical analysis results also indicate, as expected,
that when the smart warehouse system resources become more limited, and the price difference among different classes
of customer orders increases, the improvement becomes even more significant.
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1. Introduction

Smart warehouse automation has emerged as an effective, competitive solution for suppliers and distributors (Trebilcock
2003; Zhong et al. 2015; Ries, Grosse, and Fichtinger 2017; Zhou et al. 2017). It enables cost-effective end-to-end
warehouse services with better control and execution, more efficient storage and retrieval (De Koster, Van der Poort,
and Wolters 1999; Lee and Srisawat 2006; Bozer and Kile 2008; Yu and De Koster 2012), reduced errors and minimal
delay (Wang, McIntosh, and Brain 2010; Li, Moghaddam, and Nof 2015; Culler and Long 2016).

With better effectiveness and control enabled by smart warehouse automation, better customer-centric services are
possible, and can serve as strategic advantages. One of the greatest challenges for suppliers and service providers is the
need to respond with minimal latency. A useful way to distinguish suppliers is by offering a higher level of customer-
oriented services: It creates a practice of diversified pricing strategies for delivery. For those customers who are more
sensitive to price, they will be offered a lower price with relatively long delivery times, and vice versa. Warehouse, as
an important element of a supply network, has major impact on the delivery time. A critical connection between the
processing time of an order in warehouse, and delivery time is that the faster an order can be retrieved, (1) the sooner it
is available for shipping and (2) it lowers the probability for any potential delay in the delivery network (De Koster, Le-
Duc, and Roodbergen 2007). As part of smart warehouse automation, most online retailers have changed their ware-
house pick-and-pack operations from human-to-goods to goods-to-human; they use robotic, Automated Guided Vehicles
(AGVs) in an effort to speed up operations. With this type of automation, the first approach for providing price-based
differentiated services for the incoming orders from different classes of customer orders is developed in this article. We
assume that there are differentiated classes of customer orders (price based), and wish to optimise the service latency,
which is a combination of queue waiting time and the AGV retrieval time.

We develop here a novel strategy, Differentiated Probabilistic Queuing (DPQ), for scheduling orders to AGVs. In
this strategy, each order is probabilistically assigned (with certain probabilities which can be optimised) to be served by
an AGV. As a special case, some AGVs serve only certain classes of customer orders, but having this probabilistic
approach enables more flexibility based on the order frequencies of different classes of customer orders to optimise the
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overall system objectives. Therefore, in general, orders from customers who are willing to pay more will have shorter
expected waiting time than orders from those who are willing to pay less. Thus, service quality can be controlled fairly
by optimising the probability terms.

Under the DPQ policy, the average overall latency of each customer order is defined as follows. It is the mean over-
all processing time of the given customer’s orders in the warehouse automation system, under Poisson order arrival pro-
cess assumption. This measure is derived under certain simplifying assumptions explained below. The overall
processing time is a function of both the storage assignment and the probability terms of the DPQ policy. The key idea
is that the orders with a higher class can be placed closer, as well as obtain priority from the AGVs. We consider sys-
tem objective function, which is the weighted processing time for each customer order, where the weight is based on
the pricing strategy and order frequencies. A joint optimisation of the system objective is formulated over both the stor-
age assignment and the probability parameters of the DPQ policy. In order to solve this joint optimisation, Alternating
Minimisation (AM) algorithm is used.

DPQ policy probabilistically assigns the orders to different AGVs, where the probabilities can be optimised, thus
giving more flexibility as compared to the standard priority queueing (which is a special case by having the weight of
the lower priority class infinitely smaller than that of the higher priority class). As an example, if one customer pays
$100 and other pays $99, the weighted scheme will be able to provide weighted resources rather than a strict priority
where lower paying user does not have to wait significantly larger time, and thus is able to achieve weighted fairness.
Such improved flexibilities by weighted schemes are also depicted in Xiang, Aggarwal, et al. (2017) and Xiang, Lan,
et al. (2017), where it is shown that extremely large waiting times for lower service classes can be alleviated using opti-
mised weighted scheduling approaches. This leads the proposed approach to achieve better weighted latency as com-
pared to priority queueing. Further, we note that the closed form results obtained for the policy make the approach more
amenable for performing optimisation.

The main contributions of this research are as follows. First, a novel order picking planning policy of warehouse
automation system, DPQ policy, is developed for differentiating service levels for different classes of customer orders.
Using the DPQ policy in warehouse automation system, the average overall processing time of the customers’ orders is
derived. Second, a joint optimisation of the weighted latency of all customer orders is formulated over the parameters of
the storage assignment and the probability terms of DPQ policy. This optimisation problem is solved using an alternat-
ing minimisation algorithm, where each sub-problem is solved using Simulated Annealing algorithm.

Compared with a combination of the classical turn-over rate storage assignment method, and First Come First Serve
(FCFS) policy, the new approach yields 19.64% lower (better) objective function value (on average), with statistical sig-
nificance. Numerical analysis results demonstrate that the joint optimisation over the two sets of variables yields signifi-
cant improvements, over choosing one as a baseline strategy and choosing the other by our optimisation method.

The remainder of the article includes: Contributions and limitations of previous research, summarised in Section 2.
The system model and assumptions of the warehouse automation system are described in Section 3, with the new DPQ
policy and formulation of the joint optimisation problem. Next, the AM algorithm is presented for solving the joint opti-
misation problem. The performance of the developed algorithm is evaluated numerically in Section 4. Section 5 includes
the conclusions.

2. Related work

This article considers the joint optimisation of both the storage assignment and the order picking planning policy. Vari-
ous types of storage assignment method in warehouse automation system have been studied in previous research, e.g.
based on bill of material information (Xiao and Zheng 2010); based on data mining (e.g. Pang and Chan 2017). Three
typical approaches (Table 1) are: Full-turnover storage (e.g. Yu and De Koster 2009), class-based storage (e.g. Petersen
and Aase 2004), and product affinity-based heuristic (e.g. Li, Moghaddam, and Nof 2015). None, however, has
addressed physical storage considering classification of ordered products for differentiated service levels in physical pro-
duct retrieval, which is the focus and original contribution of this article.

For order picking planning policy, previous researchers have developed routing policies for picker-to-part systems
(e.g. Hwang, Oh, and Lee 2004); K-means Batching (e.g. Hsieh and Huang 2011); order picking based on storage
assignment and travel distance estimation (e.g. Tsai, Liou, and Huang 2008; Battini et al. 2015; Cheng, Liao, and Hua
2017; Epp, Wiedemann, and Furmans 2016; Buonamico, Muller, and Camargo 2017); human-factors based algorithms
(e.g. Grosse, Glock, and Neumann 2017), and Self-Organisation Map Batching (e.g. Ma and Zhao 2014) to improve the
system performance in total travel distance and average picking vehicle utility. Inspired by the Collaborative Control
Theory (Nof 2007), Zhang, Zhong, and Nof (2015) developed a fuzzy collaborative intelligence-based algorithm (fol-
lowing Azadeh et al. 2015) to optimise the assignment plans. There is no prior work in warehouse automation systems
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(Table 1) that deals with physical storage and provides differentiated service levels to different classes of orders in order
picking planning, as developed in the research described in this article.

The probabilistic queuing policy and the differentiated objective function in this research are motivated by the poli-
cies in networking and cloud storage research, which focuses on digital storage. For instance, a start-time fair queuing
algorithm for packet switching network (Goyal, Vin, and Chen 1997), an efficient fair queuing algorithm for packet
switching network (Stiliadis and Varma 1998), three-level approaches for differentiated services in measuring Web qual-
ity of service (Lee and Park 2009), joint optimisation of encoded chunks placement while optimising scheduling policy
of erasure-coded storage system with arbitrary service time distribution, and consisting of multiple heterogeneous files
(Xiang et al. 2014, 2016). Probabilistic scheduling is used by the latter, and the placement and access of contents are
optimised for minimising access latency in distributed storage systems. This particular idea is extended in this article for
physical warehouse systems, where we use a probabilistic strategy for order pickup. Differentiated services have been
considered in many areas, including wireless networks (Chen and Mohapatra 1999; Veres et al. 2001; Le, Hossain, and
Alfa 2006), cloud computing (Grit and Chase 2008; Li 2009; Rao et al. 2013), distributed scheduling (Jin, Chase, and
Kaur 2004; Shue, Freedman, and Shaikh 2012; Aggarwal et al. 2017; Xiang, Lan, et al. 2017), machine scheduling
(Lenstra, Kan, and Brucker 1977; Weng, Lu, and Ren 2001; Murray, Chao, and Khuller 2016), supply chain (Morash
and Clinton 1998; Hilletofth 2009), smart grids (Deshpande, Kim, and Thottan 2011; Bitar and Low 2012; Negrete-Pin-
cetic and Meyn 2012). The differentiated services have been studied even dating back to 1950s (Smith 1956).

An analytic upper bound of erasure-coded digital storage system using weighted queuing to provide differentiated
services (Xiang, Aggarwal, et al. 2017, Xiang, Lan, et al. 2017) is also useful for our new approach: Probabilistic queu-
ing approach is developed for order picking planning, while jointly optimising the storage assignment and order picking
planning, differentiating service levels for different classes of customer orders in the warehouse automation system.

Table 1. Storage Automation Policies: Previous Research (sample), and the New Approach.

Storage automation policies

Classify orders
for differentiated
services?

Jointly optimise storage
assignment and order
picking planning?

Physical or
digital storage
system?

Storage
Assignment

Full-turnover storage (Yu et al. 2009) No No Physical
Class-based Storage (Petersen and Aase 2004) No No Physical
Product Affinity-based Storage (Li, Moghaddam,
and Nof 2015)

No No Physical

Assignment considering Bill of Material (Xiao and
Zheng 2010)

No No Physical

Data Mining Based Location Assignment (Pang and
Chan 2017)

No No Physical

Order Picking
Planning

Routing Policies for Picker-to-Part System (Hwang,
Oh, and Lee 2004)

No No Physical

K-means Batching (Hsieh and Huang 2011) No No Physical
Self-Organisation Map Batching (Ma and Zhao
2014)

No No Physical

Fuzzy Collaborative Planning (Zhang, Zhong, and
Nof 2015)

No No Physical

Order Picking by Storage Assignment and Travel
Distance (Battini et al. 2015)

No Yes Physical

Networking
and Cloud
Storage

Start-time Fair Queuing (Goyal, Vin, and Chen
1997)

No No Digital

Efficient Fair Queuing (Stiliadis and Varma 1998) No No Digital
Joint Optimisation of Placement of Encoded Chunks
and Scheduling Policy (Xiang et al. 2016)

No Yes Digital

Weighted Queuing for Differentiated Services in
Erasure-coded Storage System (Xiang, Aggarwal,
et al. 2017; Xiang, Lan, et al. 2017)

Yes Yes Digital

Approach of
This
Article

Joint Optimisation of Storage Assignment and
Differentiated Queuing Policy in Warehouse
Automation System

Yes Yes Physical
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3. Formulation of joint optimisation of storage assignment and differentiated probabilistic queuing policy

3.1 System model and assumptions of a warehouse automation system

The assumptions about the warehouse automation system considered in this article are as follows.

(1) There are differentiated classes of customer orders (price based). Incoming orders of a product from each cus-
tomer arrive following a Poisson process. Poisson distribution is the common assumption for random request
arrival patterns, and has been used widely for incoming orders of online retailers, see for example Xu (2005);
Schneider and Klabjan (2013). This assumption can hold in general for shorter time durations (e.g. few hours),
as seen in Hill, Seifbarghy, and Smith (2007). Thus, the results in this paper can be run repeatedly for shorter
durations where the arrival rates can be predicted.

(2) Inventory is always available to fill in all the available rows of each shelf. Further, the replenishing time to refill
an empty space is not considered. This is assumed because the key focus of this work is on the order retrievals
when the inventory is not a bottleneck.

(3) We assume that each incoming order requests for a single product. This can be extended to the case when an
order requests for multiple products, by sub-dividing the order into multiple sub-orders, where each sub-order is
for a single product.

(4) An order will wait in queue until the assigned AGV is able to serve it. This is assumed because the key bottle-
neck considered in the paper is the number of AGVs. Thus, if the AGVs are serving other orders, the incoming
orders have to wait in the queues.

(5) One AGV can process only one order at a time. This is a simplifying assumption for the analysis, and consider-
ing further extensions are left for future work.

(6) Even though real warehouse automation system has a 3D layout, we assume that the warehouse automation sys-
tem has flat layout. This assumption simplifies the analysis, while can be readily extended. This assumption is
also made in many other works in the area, such as the research works by Fuentes Saenz (2011), Liu (2012)
and Li, Moghaddam, and Nof (2015).

(7) Loading and unloading times are negligible since we consider AGVs availability as the main bottleneck such as
the research assumptions by Fuentes Saenz (2011) and Liu (2012). Further, this time can be directly incorporated
in the proposed formulation by adding these times in the service time of the order.

Note that our assumptions, while simplified for practicality, are realistic based on several on-going research projects
on warehouse logistics with companies, see for example Wurman, D’Andrea, and Mountz (2008), Hu and Chang
(2010), Vliet et al. (2014), Fox13 (2015), Rowley and Battles (2015), and Vliet et al. (2016). Based on the above
assumptions, more detailed parameters of this system are defined as follows:

(a) The system has in total D classes of customer orders with different priorities, based on the price the ordering
customer has paid. The set of classes of customer orders is denoted by C, with |C| = D.

(b) Each row of each shelf can only store one type of product, and one type of product can only be stored in a
given location. Suppose the warehouse has a total of M shelves and each shelf has in total of J rows, this ware-
house has in total M ⋅ J = I types of products. The set of shelves is denoted by H. The set of rows is denoted
by R. The set of products is denoted by P, where |H| = M, |R| = J and |P| = I . The different set notations, their
cardinalities, and the set elements are also represented in Table 2.

(c) The system has N AGVs, the speed of all AGVs are the same, which is denoted by s. The set of AGVs is
denoted by A.

(d) The distance between the loading zone and the closest rows of all the shelves is fixed, L. The length of the load-
ing zone is assumed to be included in L. Distance between two rows is b.

Average processing time is the expected time from the arrival of an order, to the time when the requested product of
the order is successfully fetched back to the loading zone by the AGV. Let O ¼ fo1; . . .; oDIg be the set of orders,
where the order is opþ d�1ð ÞI corresponds to order of customer class d = {1 …, D} requesting product p = {1 …, I}. Let
Lof represent the average processing time of a type of order of 2 O. This is the sum of expected waiting time and
expected retrieval time, and is given as

Lof ¼ twaiting;of þ tretrieval;of ; (1)

where twaiting;of is the expected waiting time in the queue, and tretrieval;of is the average time for retrieving the order using
an AGV.
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(e) For simplicity, it is assumed that the travelling distance of each AGV is only the vertical distance between speci-
fic row and the loading zone. The distance between row r 2 f1; � � � ; Jg and the loading zone is (r – 1) ⋅ b + L,
as shown in Figure 1.

3.2 Retrieval latency

Based on the above assumptions and information, the mathematical model for retrieval time of each order, which
depends on the storage assignment, is constructed in this section.

Table 2. Notations for different sets used in this paper.

Name Notation Cardinality Set element notation

Class of customer orders C D d
Set of shelves H M h
Set of rows R J r
Set of products P JM = I p
Set of AGVs A N a
Set of orders O DI of
Set of weights W DI wof

Figure 1. This figure demonstrates the distance between the loading zone and the location of products.
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For each order of ; f 2 f1; � � � ;DIg, its arrival rate is denoted by kof , which is assumed to be given or predicted
based on historical data. Let Bp,r,h be an indicator variable for the location of product p 2 P:

Bp;r;h ¼ 1; if product p is stored at row r of shelf h
0; if product p is not stored at row r of shelf h

�
(2)

Based on the assumptions, we have the following constraints on Bp,r,h. A type of product can only be stored in one
location (a row of a shelf ): XJ

r¼1

XM
h¼1

Bp;r;h ¼ 1 (3)

For a row of a shelf, it can only store one type of product:

XI

p¼1
Bp;r;h ¼ 1 (4)

Once a product has been assigned to a storage location, its service time is fixed. Based on the above assumptions, the
expected retrieval time for product p 2 P is:

gp ¼
XJ
r¼1

XM
h¼1

Bp;r;h � ðr � 1Þ � bþ L

s
(5)

Since the set of orders is the multiplication of the set of product and the set of classes of customer orders, the expected
retrieval time for an order of is defined as follows:

1

lof
¼ gp;where f ¼ pþ d � 1ð ÞI ; d 2 1; 2; � � � ;Df g; p 2 f1; � � � ; Ig (6)

Thus, the expected service time 1
lof

for those orders of the same product type are the same and deterministic, because
they are only related to the placement of products. As discussed above, the expected retrieval time is only related to the
storage assignment.

tretrieval;of ¼
1

lof
(7)

3.3 Differentiated probabilistic queuing policy

Based on the above assumptions, the warehouse automation system has in total Oj j ¼ D � I types of orders. The order
set is the Cartesian product of the set of classes of customer orders and the set of products, thus containing the class of
customer order information. An ideal order picking planning policy must consider the queue state, seeing what all orders
are not yet processed. Thus, a Markov Decision Process with multiple states can be used. However, there are a lot of
states and this approach does not give expressions that can be optimised for the decision process and decisions on the
storage assignment. In order to come up with an approach to jointly consider an optimisation of storage assignment and
order picking policies, this paper proposes a feasible stochastic approach.

To provide differentiated service levels in order picking planning policy, we describe the DPQ policy as follows:

(1) Each AGV has its own queue, the system has N queues in total.
(2) All orders are served under First Come First Serve policy in each queue.
(3) Orders from of ; f 2 f1; � � � ;DIg are assigned to the queue of AGV a 2 A with probability:

Pof ;a� 0 (8)

(4) For any order of,

X
a2A

Pof ;a ¼ 1 (9)
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The orders’ flow using DPQ policy is shown in Figure 2. Suppose the system has two classes of customer orders, two
types of products, and two AGVs (denoted by a1 and a2). Then, there are four possible types of incoming orders to this
system: (1) orders for product 1 from class 1 customer orders, (2) orders for product 2 from class 1 customer orders, (3)
orders for product 1 from class 2 customer orders and (4) orders for product 2 from class 2 customer orders; denoted
by o1, o2, o3, o4, respectively (O ¼ fo1; o2; o3; o4g). When each type of those orders arrives at the system, they will be
assigned to the queue of the two AGVs with certain probabilities. For example, in this situation, o1 will be assigned to
the queue of a1 and a2 with probability Po1;a1 and Po1;a2 , respectively. Note that Po1;a1 þ Po1;a2 ¼ 1, which ensures that
the order can be served by one and only one of those AGV. Within each queue, the orders are processed under First
Come First Serve policy.

3.4 Waiting latency formulation based on DPQ policy

Based on the DPQ policy, for each AGV, it is a M/G/1 system with incoming orders from all queues (with different
probabilities) and with service rates related to the average travel distance of the requested products. The overall arrival
rate of the orders at AGV a 2 A is:

Ka ¼
X
f

kof Pof ;a (10)

For each order of 2 O, the expected service time 1
lof

is deterministic, based on the storage assignment result. The
expected service time at AGV a 2 A is the conditional expectation of the service time 1

lof
of each order of 2 O with

probability
Pof ;a
�kof

Ka
. Thus, the expected service time of AGV a 2 A is:

E Sa½ � ¼
X
f

Pof ;a � kof
Ka

:
1

lof
(11)

According to the queuing stability condition, the total arrival rate of AGV a 2 A should be less than its expected service rate:

Ka\1=E Sa½ �; 8a 2 A (12)

Since the expected service time is deterministic, which is only related to the location of a product, the second moment
of expected service time is:

E S2a
� � ¼X

f

Pof ;a � kof
Ka

:
1

l2of
(13)

Figure 2. Processing of orders under DPQ policy. Different orders are probabilistically assigned to AGVs.
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For a given AGV a 2 A, since it is a M/G/1 system, the expected waiting time in the queue is (Ross 2014):

Ta ¼
KaE S2a

� �
2ð1� KaE Sa½ �Þ (14)

Using conditional expectation, the expected waiting time for any order o 2 O can be formulated as follows:

twaiting;of ¼
X
a2A

Pof ;aTa (15)

By now, we have the closed loop function of the expected waiting time of each type of order, under the DPQ policy.
Combining Equations (1), (7) and (15), we have the following equation for the average processing time of an order:

Lof ¼
X
a22A

Pof ;aTa þ
1

lof
(16)

3.5 Joint optimisation formulation of storage assignment and queuing policy

To differentiate service level for different classes of customer orders, a price constant cd is introduced to represent the
price that class d 2 C customer have paid for their orders. The differences among cd represent the differences of the
paid prices among different classes of customer orders.

We define a set of weights W ¼ wo1 ;wo2 ; � � � ;woDIf g for each type of order, where

wof ¼ cd � kof ;whered ¼
of
I

(17)

wof combines a price constant and the arrival rate of each type of order, which is actually the weighted arrival rate of
each type of order. It measures the importance of a specific type of order by two dimensions, both the price paid by the
respective customer, and the arrival rate of this type of order. Based on these weights, we wish to minimise the
weighted processing time of the system, and thus the objective function of the system is defined as:X

f

wof Lof (18)

The objective function measures the overall service-level based response by measuring the weighted average processing
time of all incoming orders. Based on the weight functions, the more a customer has paid for his/her order, the less time
s/he should wait. Further, high arrival rate orders would have large impact, thus motivating a weight proportional to the
given order’s arrival rates.

As mentioned above, Lof ¼ twaiting;of þ tretrieval;of , where the retrieval time depends only on storage assignment, but
the waiting time is related to the queuing policy and its formula contains retrieval time. Thus, this optimisation problem
is a joint optimisation problem. Combining the equations in the previous sections, the joint optimisation of the storage
assignment and DPQ policy is formulated as follows:

min
Bp;r;h;Pof ;a

X
f

wof Lof (19)

Subject to Equations (3–6), (8–14), (16), (17)

var Pof ;a; 8f 2 1; � � � ;DIf g; a 2 A

var Bp;r;h ¼ 0 or 1; 8p 2 P; r 2 R; h 2 H

3.6 Optimisation algorithm

Jointly optimising the storage assignment and probabilities in the DPQ policy has integer constraints for the storage
assignment, thus making the problem hard. To solve this problem, Alternating Minimisation (AM) algorithm is applied.
The sub-linear convergence properties of the AM algorithm for convex problems with two sets of variables were proven
by Beck (2015).
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The basic idea of AM algorithm (Table 3) is to first fix one set of variables, and find the optimised solution of the
other set of variables. Then, fix the set variables that have just been optimised and find the optimised solution of the
first set of variables. This iteration repeats until the maximum times of iteration kmax is reached, or the difference
between new solution and old solution is smaller than a predefined threshold value δ. Since each of the sub-problem is
non-convex, Simulated Annealing (SA) algorithm (Metropolis et al. 1953; Kirkpatrick, Gelatt, and Vecchi 1983) is
applied to find the solution of each set of variables during each iteration of the AM method (Table 3).

A feasible solution is found with both sets of variables generated randomly at the beginning (Table 4). The initial
value of the objective function is calculated and stored as old cost. Then, the storage assignment result Bp,r,h is fixed
and passed to the SA algorithm with other fixed parameters. When the SA algorithm optimises the objective function,
the variables in the function are Pof ;a. After this optimisation, a relatively good solution of Pof ;a under the fixed Bp,r,h is
passed back to the main function. Then, this set of Pof ;a is fixed and passed to the SA algorithm with other fixed param-
eters. When the SA algorithm optimises the objective function, the variables in the function are Bp,r,h. After this optimi-
sation, a relatively good solution of Bp,r,h under the fixed Pof ;a is passed back to the main function. By then, one
iteration of alternating minimisation is finished, and a new solution with better objective function value is obtained. If
the difference between new cost and old cost is smaller than a predefined threshold value δ, the alternating minimisation
will stop. Otherwise, it keeps iterating until the maximum times of iteration kmax is reached, or the difference between
new solution and old solution is smaller than δ.

We note that the optimisation over storage assignment may not be possible for smaller time scales, and can be per-
formed at longer times when the distributions of the order arrivals have changed significantly (in a few months). How-
ever, the order picking policy can be optimised more often.

4. Numerical results

The system performance of the developed joint optimisation of the storage assignment and the DPQ policy is compared
with three baseline systems. The system performance is measured by the objective function, which is the overall
weighted processing time of all incoming orders. As comparisons, we use three baseline strategies for the combinations
of storage assignment and order picking.

(1) Baseline1 system: In this system, we use the Turn-over Rate storage assignment method for storage assignment
and the FCFS policy for order picking.

(2) Baseline2 system: In this system, we use the Turn-over Rate storage assignment method for storage assignment
and the DPQ policy for order picking.

(3) Baseline3 system: In this system, we use the optimised storage assignment, while use the FCFS policy for order
picking.

Table 3. Alternating minimisation algorithm for joint optimisation.

Algorithm 1 Alternating Minimisation Algorithm for Joint Optimisation

input Joint optimisation problem f Pof ;a

� �
; Bp;r;h

� �� �
, a set of weights W ¼ fw1;w2; . . .;wD�Ig for orders, number of maximum

iteration kmax, threshold value δ
1: Generate a feasible solution for f Pof ;a

� �
; Bp;r;h

� �� �
, denoted by Pof ;a

� �
0
; Bp;r;h

� �
0

2: Pof ;a

� � Pof ;a

� �
0

3: Bp;r;h

� � fBp;r;hg0
4: Cold;Cnew  f ð Pof ;a

� �
; Bp;r;h

� �Þ
5: i ← 1
6: while Cold � Cnew [ d or i ≤ kmax:
7: Cold ← Cnew

8: call Algorithm 2 to solve minf Pof ;a

� �� �
with fixed Bp;r;h

� �
9: Pof ;a

� � argminf ð Pof ;a

� �Þ
10: call Algorithm 2 to solve minf Bp;r;h

� �� �
with fixed Pof ;a

� �
11: Bp;r;h

� � argminf ð Bp;r;h

� �Þ
12: Cnew  f Pof ;a

� �
; Bp;r;h

� �� �
13: i ← i + 1
14: end while
output Pof ;a

� �
; Bp;r;h

� �
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Numerical tests are performed under Matlab environment, with the baseline settings as follows. The number of
classes are chosen to be 3, where higher the class number, higher is the priority of the class. The order frequencies ko
are generated randomly by the triangular distribution with the range of (0, 6) and peak of 3. The price function is cho-
sen as cd = d2. The number of rows are chosen to be 20, number of shelves are chosen to be 10 and the number of
AGVs are chosen to be 15. The experiments are repeated 50 times for better averaging.

4.1 Impact of number of AGVs

The impact of changing the number of AGVs can be observed as follows. Under the baseline settings, where the num-
ber of AGVs is 15, joint optimisation of the storage assignment and DPQ policy has 19.64, 4.79 and 17.16% improve-
ment in system performance as compared with the baseline1, baseline2, baseline3 systems, respectively. The results are
shown in Table 5 and Figure 3. It can be seen that as the number of AGVs decreases, the improvement percentage
increases. This is because with less AGVs, more orders wait in the queues. Thus, the relative impact of efficient orders
scheduling can increase. Therefore, the joint optimisation of the storage assignment and DPQ policy will have relatively
larger improvement when there are fewer AGVs.

Even though more AGVs in the system result in a relatively lower improvement in system performance, when the num-
ber of AGVs increases to 21, joint optimisation of storage assignment and the DPQ policy still has 13.24, 3.66 and 10.56%
relative improvement in system performance, compared with the baseline1, baseline2 and baseline3 system, respectively
(Table 5). The pairwise t-test results in Table 5 indicate that in all the tested scenarios, the improvement in system perfor-
mance brought about by applying joint optimisation of the storage assignment and DPQ policy is significant, compared with
the baseline1 system. In summary, the heavier traffic caused by reducing the number of AGVs leads to relatively higher per-
centage system improvement. Furthermore, joint optimisation of storage assignment and DPQ policy results in greater rela-
tive gains than taking any combination of one of the mixed baseline strategies, baseline 2 and baseline 3.

4.2 Impact of price function

In the second series of experiments, the price function of the system is changed, under the baseline settings. As shown
in Table 6 and Figure 4, when cd = d (dth class requests hasve d times more weight as compared to the first class), the

Table 4. Simulated annealing algorithm for optimising single set of variables.

Algorithm 2 Simulated Annealing Algorithm for Optimising Single Set of Variables

input Optimisation problem f({X}), a set of weights W ¼ fw1;w2; . . .;wD�Ig for orders, a set of fixed parameters {Y}, initial
temperature To, number of maximum iteration kmax, threshold value δ, cooling rate α

1: Generate a feasible solution for f({X}) denoted by {X}0
2: {X} ← {X}0
3: T ← To
4: Cold;Cnew  f ðfXgÞ
5: while T > Tmin

6: i ← 1
7: while Cold � Cnew [ d or i ≤ kmax:
8: Cold ← Cnew

9: Pick a random neighbouring solution {X}′
10: Cnew ← f({X}′)
11: if Cnew < Cold then
12: Xf g  fXg0
13: else
14: if e

Cold�Cnew
T [ random 0; 1ð Þ then

15: {X} ← {X}′
16: else
17: Cnew ← Cold

18: end if
19: end if
20: i ← i + 1
21: end while
22: T ← T ⋅ α
23: end while
output {X}
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Table 5. Numerical results for joint optimisation and baseline systems as the number of AGVs changes under baseline settings.

Number of
AGVs

Improvement in system
performance (compared
with baseline1) (%)

P-value of pairwise t-test results
(95% confidence level,

compared with baseline1)

Improvement in system
performance (compared
with baseline2) (%)

Improvement in system
performance (compared
with baseline3) (%)

15 19.64 2.82 × 10−47* 4.76 17.16
16 18.20 2.13 × 10−55* 4.58 15.68
17 16.76 2.43 × 10−62* 4.4 14.18
18 15.45 3.04 × 10−68* 4.21 12.84
19 14.34 1.74 × 10−67* 4.03 11.7
20 13.65 2.29 × 10−68* 3.85 10.98
21 13.24 5.87 × 10−68* 3.66 10.56

Note: * indicates significant difference

Figure 3. System performance with the proposed joint optimisation approach for different number of AGVs.

Table 6. Numerical results for joint optimisation and baseline system as price function changes under baseline settings.

Price
function

Improvement in system
performance (compared
with baseline1) (%)

P-value of pairwise t-test
(95% confidence level,

compared with baseline1)

Improvement in system
performance (compared
with baseline2) (%)

Improvement in system
performance (compared
with baseline3) (%)

cd = ed 20.42 5.46 × 10−23* 4.76 17.39
cd = d 15.99 6.95 × 10−44* 3.85 14.28
cd = d2 19.64 2.82 × 10−47* 4.76 17.16
cd = d3 26.86 1.78 × 10−48* 6.54 23.81

Note: * indicates significant difference.
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relative improvement in system performance is 16.00, 3.85 and 14.68%, respectively, compared with those three base-
line systems. This relative improvement increases to 19.64, 4.76 and 17.16% when cd = d2 and is 26.86, 6.54 and
23.81% when cd ¼ d3. The results of pairwise t-test (Table 6) indicate the statistical significance of these improvements,
compared with baseline1 system. Thus, the higher the difference in weights among the different classes, the higher is
the advantage of using the differentiated service levels approach.

5. Conclusion

One of the significant advantages of smart warehouse automation is the ability to offer a variety of customer oriented
services. Such services enable suppliers to distinguish themselves in an increasingly competitive market. Differentiated
service is a useful and practical approach when a service provider has to respond effectively to many customers under
time constraints, and some of the customers are willing to pay a higher price for the service, to obtain faster and/or bet-
ter service quality. The research reported in this article is the first work that considers differentiated service levels for
different classes of customer orders in a smart warehouse automation system. It provides an integrated vision on the
delivery system of online retailers with multi-levels pricing strategy. A novel order picking planning policy of ware-
house automation system, DPQ policy, is developed in this article for differentiating service levels for different classes
of paying customers. This policy is more flexible compared to the standard priority queueing policy, since general
weights for different customers can be used. Using DPQ policy, the average overall latency of each customer order is
characterised. The weighted latency for different price-based classes of customer orders is optimised over storage assign-
ment and the parameters of the DPQ policy. Numerical results indicate statistically significant performance improve-
ments as compared to the traditional combination of Turn-over Rate storage assignment method, and the FCFS policy
for AGV picking.

Future research will address relaxing some of the assumptions made (summarised in Table 4). Other interesting open
questions to consider are the comparison of the DPQ policy in digital versus physical storage service cases, and differ-
ent combinations of product pricing and service level pricing.

Figure 4. System performance with the proposed joint optimisation approach for different price functions.
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Nomenclature
AGV Automated Guided Vehicle
AM Alternating Minimisation
DPQ Differentiated Probabilistic Queuing
CCT Collaborative Control Theory
FCFS First Come First Serve
SA Simulated Annealing
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